
Lecture 21 - Nov. 21

Inheritance

Polymorphic Arrays
Polymorphic Return Values
Type-Checking Rules
Solving Problems Recursively



Announcements/Reminders

• Lab5 released
+ Required study: Abstract Classes & Interfaces

• ProgTest3 grading process to start on Monday
• Exam Review Sessions eClass Polling
• Bonus Opportunity coming: Formal Course Evaluation



Casting Arguments

sms.addRS( (ResidentStudent) s) compiles?

sms.addRS( (ResidentStudent) nrs) compiles?

ClassCastException?

ClassCastException?

ClassCastException?

void addRS(ResidentStudent rs)
~ downcast
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A Polymorphic Collection of Students

sms.ss[0] instanceof NonResidentStudent
sms.ss[0] instanceof ResidentStudent
sms.ss[0] instanceof Student

sms.ss[1] instanceof NonResidentStudent
sms.ss[1] instanceof ResidentStudent
sms.ss[1] instanceof Student
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Polymorphic Return Types
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Summary: Type Checking Rules



Overridden Methods and Dynamic Binding (1)



Overridden Methods and Dynamic Binding (2)



Overridden Methods and Dynamic Binding (3)
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Solving a Problem Recursively

Given a small problem: Solve it directly: 

Given a big problem: 

Divide it into smaller problems: 

Assume solutions to smaller problems:

Combine solutions to smaller problems:
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-> must be a strictly smaller problem (J < 1)

calling m itself => recursion



Runtime Stack

Tracing Recursion via a Stack
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Recursive Solution: factorial
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