
Lecture 21 - Nov. 21

Inheritance

Polymorphic Arrays
Polymorphic Return Values
Type-Checking Rules
Solving Problems Recursively

Announcements/Reminders

• Lab5 released
+ Required study: Abstract Classes & Interfaces

• ProgTest3 grading process to start on Monday
• Exam Review Sessions eClass Polling
• Bonus Opportunity coming: Formal Course Evaluation

Casting Arguments

sms.addRS((ResidentStudent) s) compiles?

sms.addRS((ResidentStudent) nrs) compiles?

ClassCastException?

ClassCastException?

ClassCastException?

void addRS(ResidentStudent rs)
~ downcast

&CE ?
↳ if DT of S is ne YES:
a descent of cast type RS

YES.

No
.

-

1

ierundea

A Polymorphic Collection of Students

sms.ss[0] instanceof NonResidentStudent
sms.ss[0] instanceof ResidentStudent
sms.ss[0] instanceof Student

sms.ss[1] instanceof NonResidentStudent
sms.ss[1] instanceof ResidentStudent
sms.ss[1] instanceof Student

Serg-stoteach elem

Mara
- SST0] : SiStudent. stStudent,NR

&
①

D

Polymorphic Return Types

*
-

~ ↑
O

->
dynamic binding : is version called. ==

V

-

Summary: Type Checking Rules

Overridden Methods and Dynamic Binding (1)

Overridden Methods and Dynamic Binding (2)

Overridden Methods and Dynamic Binding (3)

overriddentheaegestor.

Solving a Problem Recursively

Given a small problem: Solve it directly:

Given a big problem:

Divide it into smaller problems:

Assume solutions to smaller problems:

Combine solutions to smaller problems:

Cast-
#

Recursive

Bast

#last #1
- given problem

-> must be a strictly smaller problem (J < 1)

calling m itself => recursion

Runtime Stack

Tracing Recursion via a Stack

W

Recursive Solution: factorial

↓
not a recursive definition.

base

-> ! =E rese in
problea ↓ ↓

a strictly factoriaem
smallerproblem

pro

